无穷小

无穷小的定义

limxx0f(x)=0\lim\limits_{x \to x_0}f(x) = 0 ,则称当 xx0x \to x_0f(x)f(x)无穷小量

无穷小的比阶

u(x)u(x)v(x)v(x)xx0x \to x_0 时都是无穷小量。为了比较他们趋于 00 的速度快慢,需要讨论 u(x)v(x)\dfrac{u(x)}{v(x)} 的极限情况:

  1. limxx0u(x)v(x)=0\lim\limits_{x \to x_0}\dfrac{u(x)}{v(x)} = 0 ,则表示当 xx0x \to x_0 时,u(x)u(x)趋于 00 的速度比 v(x)v(x) 趋于00 的速度快。

    称当 xx0x \to x_0时,u(x)u(x) 是关于 v(x)v(x)高阶无穷小(或 v(x)v(x) 是关于 u(x)u(x)低阶无穷小),记为

    u(x)=o(v(x))(xx0)u(x) = o\big(v(x) \big) \quad (x \to x_0)

  2. 若存在 A>0A > 0 ,当 xxx0x_0 的某个去心邻域中,成立

    u(x)v(x)A\lvert \dfrac{u(x)}{v(x)} \rvert \leqslant A \quad \text{,}

    则称当 xx0x \to x_0 时,u(x)v(x)\dfrac{u(x)}{v(x)}有界量,记为

    u(x)=O(v(x))(xx0)u(x) = O\big(v(x)\big) \quad (x \to x_0) \quad \text{。}

    若又存在 a>0a > 0 ,当 xxx0x_0 的某个去心邻域中,成立

    au(x)v(x)Aa \leqslant \lvert \dfrac{u(x)}{v(x)} \rvert \leqslant A \quad \text{,}

    则称当 xx0x \to x_0 时,u(x)u(x)v(x)v(x)同阶无穷小量。显然,若 limxx0u(x)v(x)=c0\lim\limits_{x \to x_0} \dfrac{u(x)}{v(x)}= c \neq 0 ,则 u(x)u(x)v(x)v(x) 必是同阶无穷小量。

例:当 x0x \to 0 时, (3+2tanx)x3x(3 + 2\tan x)^x - 3^x3sin2x+x3cos1x3\sin^2x + x^3\cos\dfrac{1}{x} 同阶非等价 无穷小。

由 limx0x3cos1x3sin2x=13limx0xcos1x=0,可知 3sin2x+x3cos1x3sin2x3x2(x0)故 limx0(3+2tanx)x3x3sin2x+x3cos1x=limx03x[(1+23tanx)x1]3x2=limx0xln(1+23tanx)3x2=291综上, (3+2tanx)x3x 是 3sin2x+x3cos1x 的同阶非等价无穷小。\begin{aligned} &\text{由 } \lim\limits_{x \to 0}\dfrac{x^3\cos\dfrac{1}{x}}{3\sin^2x} = \dfrac{1}{3}\lim\limits_{x \to 0}x\cos\dfrac{1}{x} = 0, \\\\ &\text{可知 } 3sin^2x + x^3cos\dfrac{1}{x} \thicksim 3\sin^2x \thicksim 3x^2 (x \to 0) \\\\ &\text{故 } \lim\limits_{x \to 0}\dfrac{(3 + 2\tan x)^x - 3^x}{3\sin^2x + x^3\cos\dfrac{1}{x}} \\\\ & = \lim\limits_{x \to 0}\dfrac{3^x[(1+\dfrac{2}{3}\tan x)^x - 1]}{3x^2} \\\\ & = \lim\limits_{x \to 0}\dfrac{x\ln(1+\dfrac{2}{3}\tan x)}{3x^2} \\\\ & = \dfrac{2}{9} \neq 1 \\\\ & \text{综上, } (3 + 2\tan x)^x - 3^x \text{ 是 } 3\sin^2x + x^3\cos\dfrac{1}{x} \text{ 的同阶非等价无穷小。} \end{aligned}

  1. limxx0u(x)v(x)=1\lim\limits_{x \to x_0}\dfrac{u(x)}{v(x)} = 1 ,称当 xx0x \to x_0 时,u(x)u(x)v(x)v(x)等价无穷小量,记为

    u(x)v(x)(xx0)u(x) \thicksim v(x) \quad (x \to x_0)

    上式也可以写成

    u(x)=v(x)+o(v(x))(xx0)u(x) = v(x) + o\big(v(x)\big) \quad (x \to x_0) \text{,}

    表示当 xx0x \to x_0 时, u(x)u(x)v(x)v(x) 两者相差一个高阶无穷小量

等价无穷小可替换

u(x)u(x)v(x)v(x)w(x)w(x)x0x_0 的某个去心领域 UU 上有定义,且 limxx0v(x)w(x)=1\lim\limits_{x \to x_0}\dfrac{v(x)}{w(x)}=1 (即 v(x)w(x)(xx0)v(x) \sim w(x)(x \to x_0) ),那么当
limxx0u(x)w(x)=A\lim\limits_{x \to x_0}u(x)w(x) = A 时, limxx0u(x)v(x)=A\lim\limits_{x \to x_0}u(x)v(x) = A

常见的等价无穷小

当 x0 时:sinxxtanxxarcsinxxarctanxxln(1+x)xex1xax1xlna1cosx12x2(1+x)α1αx\begin{aligned} \text{当 } x \to 0 \text{ 时:} \\\\ \sin x &\sim x \\\\ \tan x &\sim x \\\\ \arcsin x &\sim x \\\\ \arctan x &\sim x \\\\ \ln(1+x) &\sim x \\\\ e^x-1 &\sim x \\\\ a^x - 1 &\sim x\ln a \\\\ 1-\cos x &\sim \dfrac{1}{2}x^2 \\\\ (1+x)^\alpha-1 &\sim \alpha x \end{aligned}